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Figure 1: Function on four variables

1 Background Into The Pattern Theory Approach

The Pattern Theory1 paradigm focuses on two central ideas shown in this section. The first is functions that
the investigator wishes to learn, have low decomposed function cardinality. The second is functions with low
decomposed function cardinality are learnable with a relatively small number of samples. In this section, we will
present some background on function decomposition and how Pattern Theory uses this as a robust way to find
patterns.

Decomposing a function involves breaking it up into smaller subfunctions. These smaller functions are further
broken down until all subfunctions will no longer decompose. For a given function, the number of ways to choose
two sets of variables (the partition space) is exponential. The decomposition space is even larger, since there
are several ways the subfunctions can be combined and there are several levels of subfunctions possible. The
complexity measure that we use to determine the relative predictive power of different function decompositions
is called Decomposed Function Cardinality (DFC).

DFC is calculated by adding the cardinalities of each of the subfunctions in the decomposition. The cardinality
of an ia-variable binary function is 2". We illustrate the measure in the above figures. In Figure 1, we have a
function on four variables with cardinality 24 = 16. In Figure 2, we show the same function after it has been
decomposed. The DFC of this representation for the original function is 22 + 22 + 22 = 12. The DFC measures
the relative complexity of a function. When we search through the possible decompositions for a function, we
choose one with the smallest DFC. This decomposition is our learned concept.

The decomposed representation of the function is one that exhibits more information than the alternative. For
example, Figure 1 is essentially a lookup table of inputs and outputs. Figure 2, on the other hand, is a function
that is not simply a table. The decomposition, for example, could be two simple functions combined together.

Throughout the paper when we refer to a minimal function decomposition, we use "minimal" to mean a
decomposition such that the DFC is the smallest possible for the entire set of decomporitions. It is noted that
a given minimal decomposition is not unique. For a more rigorous explanation of the inner workings of function
decomposition or function extrapolation, the reader is referred to [11, [21 and [8].

An important point is that a function with a low DFC has been experimentally and theoretically determined to
be learnable with a small number of samples [8]. Also, functions we are interested in learning, (i.e., functions that
are highly "patterned,") have a low DFC. The Function Learning And Synthesis Hot-Bed (FLASH) was developed
to explore function decomposition, and pattern finding. This paper will show that the FLASH program exhibits
promising results for finding patterns robustly.

'System Concepts, Wright Laboratory, WL/AART-2 2690 C Street STE 1, Wright-Patterson AFB, Ohio 45433-7408 Email:
sol•Imaujaa.wpa•ba~ii
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Figure 2: Decomposed function on four variables

2 The C4.5 System

C4.5 is a machine learning software package. A detailed study of it is given in [7]. The intention of this section
is to familiarize the reader with general information about how C4.5 learns a concept. It is important to note
that C4.5 is equipped to handle noisy data, conflicting data, continuous variables, and other features which are
not our primary concern in this discussion. Although pattern theory is interested in these issues, we are testing
performances given binary variables and 100% truthful data.

C4.5 is a decision-tree and rule-based system. This makes it a shallow reasoner. In other words, a deep
understanding of the world is not required. The advantages of a shallow reasoner are in the separation of knowledge
and control, there is a natural mapping to rules, the rules are modular, and it is easy to provide an explanation.
The disadvantages are the brittleness associated with an implicit domain model, it lacks common sense, it lacks
robustness, there are problems with formal verification, and often they have limited learning capabilities. A rule-
based system works best with diagnosis, configuration and control, and process control. Moreover, rule-based
systems are excellent for any system that has independent states, simple control flow (limited branching), and
the ability to state knowledge needed without stating how it was obtained.

SThe C4.5 system has many different options that can be altered by the user for a given learning environment.
The default options are as follows. First, given a training set, C4.5 builds a decision tree using the gain ratio
criterion. In short, C4.5 chooses a test for the tree if it splits the training data into two unbalanced groups (i.e.,
Only Positive, Only Negative, Largest Positive). The measure is also normalized. In essence, the gain metric is
a measure of Entropy. Second, C4.5 has a threshold default of 2 for a given test in a tree. The test must have at
least 2 outcomes with a minimum number of cases. To be more precise, the sum of the weights of the cases for
at least two subsets must attain a minimum of 2. We would increase this value if we had noisy data.

Other flexibility built into C4.5 includes changing the amount of pruning of the decision tree (for more gen-
eralisation and better predictability with noisy data), allowing C4.5 to choose among n best trees, windowing,
debugging, use of continuous variables, using the older unnormalised gain, and various options for the rule in-
duction program. For our purposes, we will not be concerned with pruning since we are interested in C4.5's best
classification of the training data. We will, however, test different weight minimums for the gain metric, vary the
number of trees, test grouping, and change minimums and maximums for windowing sizes.

Windowing in C4.5 is a feature that is used when creating the initial tree in the test cases. The procedure is
to select a random number of training cases and build a tree. This tree is then used to classify the remaining
training cases. Any misclassifications are used in a new refinement of the original tree. The cycle is repeated
until a tree is built that correctly classifies all of the training data. C4.5 allows you to alter the number of cases
to be included in the initial window. It also lets you specify a maximum number of cases that can be added to
the window at each iteration. The grouping option for C4.5 allows the method to group discrete attributes by
value. Quinlan describes this procedure in detail when we have discrete variables with many values. The purpose
of grouping is to prevent forced binary splits. It uses an iterative merging technique on the training elements. We
were uncertain at the time of testing, if this grouping would have any relevance to our binary variable domain.
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Therefore, to be thorough, it was better to try the method than to ignore it.
It is useful at this point to discuss the option that allows C4.5 to build several trees retaining the best. The

reason C4.5 doesn't produce an optimal tree (optimal in the sense that it is the smallest decision tree possible,
consistent with the training set) every time is because this problem is NP-complete [5]. Thus, the gain metric is
only a heuristic to build a near optimal tree in polynomial time.

Some shortcomings of C4.5 are mentioned in [7]. One is that C4.5 cannot correctly classify cases in which
there are non-rectangular re;ions. For example, in dealing with continuous variables on a two-dimensional plane,
the line y = x(z, y > 0) does not lend itself to building rectangular regions. Instead, the triangular regions are
approximated. Problems arising related to this are poorly delineated regions and fragmented regions. The author
attributes fragmented regions to not haing enough data to correctly classify.

3 Description of Benchmark Set

Our benchmark set of functions will be used to compare the learning ability of C4.5 and Pattern Theory. This
set of functions, although not exhaustive, is designed to include many types of relationships that we might be
interested in. The overall goal of testing on several different functions is to compare robust learning ability in
this restrictive domain of binary variables. However, it is important to point out that although Pattern Theory
is not yet equipped to handle continuous variables, the underlying theory generalizes to discrete and continuous
variables. The reader is invited to a formal proof and further reading in [8]. The point is key since the binary
domain is so restrictive.

The benchmark set includes some 4 dozen functions. The categories break down into: Boolean Expressions,
String Functions, Images, Symmetric Functions, Numerical Functions, and Random Functions. All of the func-
tions are of the form F : [0, I]' --# [0, 1]. In other words, there are eight binary variable inputs and one binary
variable output. A detailed description of each function is given here.

3.1 RANDOM

There are 3 functions that were randomly generated from FLASH with seeds 1,2, and 3. They are labeled:
rndl, rnd2, and rnd3.

3.2 RANDOM MINORITY ELEMENTS

There are 5 functions generated which have a fixed number of minority elements placed at random. The seed
for each was 1. They are labeled: rnd-ml, rnd.m5, rnd-m10, rndam25, rnd-m50.

3.3 BOOLEAN EXPRESSION

These 10 KDD functions were designed to represent concepts in a database. KDD stands for Knowledge
Discovery in Databases. They were first used in [3] and later in [4].

KDD1 = (ZZ3) + Y2

KDD2 = (Z19223)(24 + .)
XDD3 = (ET ij) + (Z426)
KDD4 =14
KDD5 = (Z122N4) + (Z3 ! 5 X7 Z8 ) + (21Z2Z5262,) + (F 3 45 )
KDD6 = 22 + 04 + ze + 28
KDD7 = (Z122) + (Z034) + (Z2s5) + (:Z7X)
KDD8 = (2IE2 ) XOR (:1zs)
KDD9 = (:2 XOR 24)(M1 XOR (xs:x:,))
KDDIO = (Z1 4" 24) XOR (7Z--(: 2 + Z3))
multiplexer, mux6, used in Kosa, this is a 2-address bit, 4-data bit multiplexer with two vacuous variables (z0

and z,) to make 8 inputs. Generated mux6 with FLASH and then edited to make muxg. 3/29/94.
"Deep functions" generated by Mike Noviskey: 04.26.94and-or-chain8,(removed or.and.chain8 because or-and-chain8(x)

= not(and-or..chain8(not(x)), as in DeMorgan's Theorem)

3



3.4 VARIATION ON THE MONK PROBLEMS

These are 8 binary variable approximation to the Monk's problems of [9].
21 : head shape (rnd, octagonal)
"2: body shape (md, octagonal)
23: smiling (yes, no)
z4, z5: holding (sword, balloon, flag, M16)
z6, z: jacket color (red, yellow, green,blue)
xs : has tie (yes, no)
monkishl: head shape equals body shape or jacket is red.
monkish2: exactly 2 of 6 attributes have 1st value.
monkish3: (jacket green & has sword) or (jacket not blue and body not oct.) generated with FLASH, 4/6/94.

3.5 STRING FUNCTIONS

These functions are operators on 8-bit binary strings, palindrome acceptor; pal, from FLASH 2/18/94.
palindrome output; pal-output, from Mike Noviskey, and PVWave, randomly generated 128 bits then mirror

imaged them to create the outputs of an 8 variable function. 3/25/94
doubly palindromed output; paLdbLoutput, from Mike as above except he generated 64 bits and flipped them

twice. 3/25/94
2 interval acceptors from FLASH 2/18/94;
intervall accepts strings with 3 or fewer intervals
interval2 accepts strings with 4 or fewer intervals
2 sub-string detectors from FLASH 2/18/94;
substrl accepts strings with the sub-string "101"
substr2 accepts strings with the sub-string "1100"

3.6 IMAGES

These functions are various bit maps. chXfY means character X from font Y of the Borland font set. All were
generated with the Pascal program charfn.exe of 2/28/94.

ch8fr - kind of a flat plus sign
chl5f0 - an Aztec looking design
ch22f0 - horizontal bar
ch30f0 - solid isosoles triangle
ch47fO - slash
ch1760f - every other column of a checker board
ch177fO - checker board
ch74fl - triplex J
ch83f2 - small S (thin strokes)
ch70f3 - sans serif F
ch52f4 - Gothic 4

3.7 SYMMETRIC FUNCTIONS

These functions are symmetric, meaning re-arranging the order of the inputs does not affect the output.
parity, from FLASH 2/22/94. containsA_4ones, (f(x)=l if and only if the str x has k ones), from FLASH 3/2/94.

majority-gate, f(x)=l if and only if x has more l's than O's, from FLASH 3/2/94.

4



3.8 NUMERICAL FUNCTIONS

These functions are various arithmetic operators.
addition; addO, add2, add4 - outputs bits of a 4 bit adder, 0 is the most significant bit, generated with FLASH

2/22/94.
greater-than: f(:I, Z2) = 1 if and only if z1 > z2, geveratel with FLASH 3/2/94.
subtraction: subtraction1, subtraction3 - output bits 1 and 3 of the absolute value of a 4 bit difference. 0 is

most significant bit. generated with FLASH 3/2/94.
modulus2, output bit 2 of 4-bit modulus 0 is the most significant bit, generated with FLASH 2/22/94.
remainder2, output bit 2 of 4-bit remainder 0 is the most significant bit, generated with FLASH 2/22/94.

4 Experimental Design

The overall design of our experiment is as follows. First, several options were tested on all the benchmark
functions in order to determine what parameters yielded the best performance for C4.5. Next, the resulting
learning curves were compared with Pattern Theory.

The tests on the individual functions were as follows. First, each method was given a random set of data to
train on ranging from 25 to 250 out of a total of 256 possible cases. Once the method was trained, the entire 256
cases were tested and the number of differences were recorded as errors. This procedure was repeated 10 times
for a given sample training sise in intervals of 25 yielding a maximum, minimum, and average number of errors
for each. Thus, the total number of runs for each function was 100 of varying sample size. None of the learning
was incremental. All (if the runs were independent.

Our first task was to find the best options to maximize C4.5's performance over the entire training set. The
options that were varied on C4.5 include the weight (threshold value for branching), initial windowing size,
maximum window size, grouping, and the number of trees grown. The results are displayed in Tables 1-6. The
rows are for each function tested. The columns are a description of the options given. The value in the table is
the average number of errors for a given run, for a given function over the entire sampling of 25 to 250 samples
(the average of all 100 points). The value at the bottom is the average number of errors for a given set of options
over the entire set oi functions. The smaller the number here, the better the overall performance.

The data is divided into six separate tables. Table 1 shows the relative performances of C4.5 with all of the
default options, varying the number of trees. The first column is one tree (the default), the second column is 10
trees, and the third column is 100 trees. Table 2 shows the relative performance of C4.5 with the default options
except that the windowing sise (-w) is set to 0. Again, the three columns vary the number of trees from 1 to 10
to 100. Table 3 has all of the default options except the threshold parameter (-m) is set to 0. Once again, the
number of trees are 1, 10, and 100 respectively. Table 4, like the others, has all the default options except the
threshold is set to 0 and the window size is set to 0.

Table 5 is slightly different. The first column tests all of the default options with the threshold set to -1. This
was compared with the identical run where the threshold was set to 0 (column 1 of Table 3) to ensure that 0 was
indeed the lowest possible setting for the threshold parameter. The second column has the default options except
the threshold is set to 0 and the maximum number of allowable cases is 256 (-i 256). This means essentially that
since this is only an eight variable function, we have no imposed maximum number of cases. Column three is the
default options except the threshold is set to 1 and the number of trees built is 10.

Finally, Table 6 shows some final experiments using grouping (-s) in addition to our best options given so far.
Column 1 is the default options except the threshold is 0 and the number of trees built is ten. Column 2 is the
same except the threshold value is 1.

If we examine all the tables in detail, we can conclude that having the threshold value set to 0 (smallest
possible) or 1, there is a significant decrease in the number of errors when compared with the default. There
does not appear to be any significant difference between a threshold of 0 and 1. As far as changing window
sise parameters, there is no significant change. In fact, once we use 10 or more trees, the initial window size
parameter does not make any difference. The grouping option does not appear to give any advantage either for
this data set. As far as the best number of trees, clearly more is better. However, there doesn't appear to be

5



Function Name 1 C4.5 Defou" C4.5 10 trees C4.5 100 trees
addO 22.56 22.62 23.12
add2 ' 64.12 33.5 31.76
add4 39.72 3.38 3.38
ch 15fO 47.96 37.92. 35.62
ch 176f0 20.54 6.4 5.44
ch177f0 39.14, 2.08 2.08
ch22fO 29.96 15.18! 14.6
ch3OfO 18.18 16.06, 15.72
ch47fO 33.08 26.5: 26.2
ch52f4 30.76 28.781 27.96
ch7Of3 15.51 15.08 14.72
ch74f 1 20.91 20.12 19.66
ch83f2 33.421 32.24 32.42
ch8f0 20.841 16.84 16
containsA._ones 80.181 80.6 80.84
grecterjhan 21.36 20.96 21.04
Intervall 44.94 44.14 44.58
Interval2 62.82 63 62.14
kddl 0.64 0.64 0.64
kddIO 25.54 23.8 23.52
kdd2 3.76 3.84 3.6
kdd3 2.56 1.76 1.76
kdd4 0 0 0
kdd5 15.02 14.24 V'96
kdd6 3.S4 3.36 3. '6
kdd7 26.94 28.3 28.46
kdd8 16.32 6.04 3.2
kdd9 30.56 16.94 16.2
ma okty-gate 48.68 49.16 49.56
modulus2 16.72 17.42 17.16
mux8 23.28 17.8 14.52
pal 18.8 19.16 19.16
palidbl-output 73.74 68.7 65.14
pal-output 84.74 83.28 82.76
parity 128 128 128
remalndr2 31.95 31.49 31.23
mdmlrnI 1 1 1
md ro10 11.02 11.24 11.24
md m25 29.34 30 30
mdrn5Z 5.74 5.52 5.52
mdmSO 54.4 55.14 55.08
mdI 87.84 86.46 85.68
rnd2 89.04 86.32 85.44
md3 85.3 84.34 83.68
substrI 41.44 37.38 36.22
substr2 33.3 29 26.68
subtractl 64.14 53.02 52.94
subtract3 39.72 3.38 3.38

Average over 36.2364583 30.87770833 30.34104167
all Functions

Table 1: C4.5 trials with default options, varying the number of trees
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C4.5 1 tree C4.5 10 trees C4.5 100 trees
Function Name ]Window Size = 0 !Window Size = 0 Window Size = 0
addO 23.2, 22.62' 23.12
add2 45.541 33.5 31.76
add4 7.06I 3.38, 3.38
ch I5fO 41.68 37.92 1 35.62
ch 176f0 8.36 6.4 5.44
ch17710 7.2, 2.08 2.08
ch221O 19.461 15.18i 14.6
ch3OfO 17.54ý 16.06' 15.72
ch4710 31.521 26.5 26.2
ch52f4 30.04! 28.781 27.96
ch70f3 15.62: 15.08! 14.72
ch74f 1 20.71 20.12 19.66
ch83f2 32.721 32.24 32.42
ch81f 18.31 16.841 16
contains_4 ones _ _ 80._ _ 80.6_ 80.84
greater than 2C_42_ 20.961 21.04
Intervall 44.321 44.14 44.58
Interval2 __62.74i 63 62.14
kddl 0.64 0.641 0.64
kdd 10 24.72 23
kdd2 4i 3.4 3.6
kdd3 3.04 1.76 1.76kdI o 01 0
kd15 15.92 14.241 13.96
kdd6 3.36 3.361 3.36
kdd7 27.2 28.3 28.46
kdd8 9 6.04, 3.2
kdd9 20.18 16.94 16.2
majorty__gate 48.62 49.16 49.56
modulus2 16.98 17.42 17.16
mux8 20.4 17.8' 14.52
pal 19.16 19.16
paldbloutput 71.1 68.71 65.14
pal-output 1 84.5 83.281 82.76
parity 1 128 1281 128
remalndr2 32.62 31.491 31.23
md.,-m1 1 1 1
rnd mlO 11. 11.24 11.24
md-m25 301 30 30
rodm5 5.521 5.52 5.52
md m5O 54.92 55.14 55.08
Mdl 87.141 86.46 85.68
rnd2 88.041 86.321 85.44
rmd3 ] 8 5 .2 8 r 84.34 83.68
substrl 39.5 37. 36.22
substr2 32.42 26.68
subtractl 1 58.38 53.02 52.94
subtract3 7.06 3.381 3.38

AverageFunctonsver 32.44166667 30.87770833 30.34104167

Table 2: C4.5 trials with window size 0, varying the number of trees

7



IC4.5 1 tree C4.5 10 trees C4.5 100 trees
Function Name !Threshold = 0 Threshold = 0 Threshold = 0
adcdO 15.93 16.26 16.58
acld2 44.781 27.4, 26.32

ddcl4 27.291 3.61 3.6
ch 15fO 33.251 27.98 25.88
ch176f0 13.49 5.54 5.54
ch177f0 26.42 0 0
ch22fO 22.871 11.63 9.96
ch30fW 11.871 11.541 12.18
ch47f0 25.791 21 .52i 20.92
ch52f4 23.55 22.63 22.12
ch7Of3 12.17 12.18: 12.06
ch74f1 16.71 15.79, 15.8
ch83f2 27.771 26.03! 25.94
ch8f0 14.561 11.931 11.6
contalns_4_ones 59.1 58.49r 58.68
greater_.than 15.891 16: 16.03
Intervall 32.95' 34.28: 33.92
interval2 44.03 44.38 44.43
kdd 1 0.32! 0.32 0.32
kddlO j017.731 17.52 17.96
lc~d2 2.241 2.76 2.76
kcld23 1.61 1.28 1.28
kdd4 0! 0 0
kdd5 11.2 10.52 10.46
kd6 2.481 2.48 2.48
kdd7 p 19.08 20.69 21.81
kdd8 10.99 6.35 6.03
kdd9 - 21.54 13.79 13.63
majoritygate 34.85 36.24 35.54
modulus2 12.15 12.26 12.29
mux8 19.29 13.96 11.44
pot 15.96 16.67 16.67
pal-dbLoutput 52.9 50.77 50.13
pal-output 58.84 58.98 59.39
parity 87.22 86.58 86.99
remalndr2 25.48 25.49 25.36
nc-md m 2.42 2.38 2.38
rndc_mlO 11.66 11.62 11.62
rmd_m25 26.37 25.591 25.59
mrn._m5 7.53 6.99 6.99
rnd_m5O 42.75 42.72 43.01
rncll 60.45 61.5 61.1
rnd2 61.52 62.25 61.84
rnd3 60.84 60.48 60.84
substrI 31.63 30.3 28.67
substr2 24.63 22.08 21.13
subtract1 48.15 41.42 41.43
subtract3 27.29 3.6 3.6

Average over 26.4068751 23.22375 23.00625
all Functions I

Table 3: C4.5 trials with threshold size 0, varying the number of trees
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C4.5 1 tree C4.5 10 trees IC4.5 100 trees
Function Name 1Thre5h=Wnd.=O Thresh=Wind.=6 3Thresh=Wind.=O
CIc10t 15.92 16.265 16.58
adcd2 35.4 27.45 26.32
adcd4 102 3.63 3.6
ch 1fW 30.81 27.98 25.88

ch 17f0__ _ _ _ _ _ _ _ _ _ _ _ __ _ _ _ _

co 4 ones 6.38 5.54 5.54
ch177fO 5.24i 01 0

ch2e2fO h 15.11 9 11.63 9.96ch3OfO i12.04! 11.54: 12.18

c3730 .22.62 21.52 20.92
ch52f4 23.611 22.63 22.12
ch70f3 11.931 12.18 12.06
Ch74f 1 16.526 15.791 15.8
ch83f2 25.921 26.031 25.94
ch8fO j 13.081 11.931 11.6
contalnkd 4_ones 58.541 58149 1 58.68grecrer_tan 15.951 16i 16.03
intervalI 33.531 34.28d1 33.92
interval2 45.06 2 44.35! 44.43
kdd71 0.328 0.326 0.32
kdd9 16.41 17952 17.96
kdcd2 2.06 12.761 2.76
kdd3 1.28i 1.28 1.28
kddc4 01 0 0
kdc[5 11.21 10.52! 10.46
kcdd6 2.64ý 2.481 2.48
kddJ7 19.871 20.691 21.81

kdd8 7.511 6.351 6.03
kdcl9 1 16.161 13.79 13.63
majority-gate 35 36.241 35.54
modulus2 1 2.0V - 12.261 12.29
mux8 17.371 13-961 11.44
p1; - 16.351 16.67! 16.67

pol-dbluoutput 52.161 50.771 50.13

pal-output 58.1 58.981 59.39
Mriy 86.47 86.58 86.99

remalndr2 26.07 25.49 25.36
nd ml 2.38 2.38 2.38
md.m10 11.741 11.62 11.62
md.m25 25.59 25.591 25.59
md-m5 6.99 6.99 6.99
md m50 42.65 42.721 43.01
Mo1 61.16 61.51 61.1
md2 61.63 62.251 61.84
rnd3 61.031 60.481 60.84
substrl 31.12 30.3; 28.67
substr2 24.6 22.08 21.13
subtractl 1 45.09 41.42 41.43
subtract3 10 3.6 3.6

Average over 24.23166667 23.22375 23.00625
oll Functions

Table 4: C4.5 trials with window and threshold sue 0, varying the number of trees
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C4.5 1 tree I C4.5 10 trees ,C4.5 10 tree.4
Function Name Threshold--I Thresh=0, -1256 Threshold= 1
addO 15.93 16.13 16.26
add2 44.78 28.69 27.42
add4 27.29 3.72 3.6
ch1510 33.25 28.27 27.87
ch 176f0 13.491 6.25 5.54
ch177f0 26.42, 5.06 0
ch22fO 22.87 12.02 11.59
ch3OfO 11.87 11.44 11.58
ch47fO 25.79 20.761 21.52
ch52f4 23.55 23.231 22.45
ch7Of3 12.17 11.991 12.19
cn74f1 16.71 16.09 15.83
ch83f2 27.77 26.77 26.03
ch8fO 14.56 11.9 11.97
contains_4_ones 59.1 57.81 58.49
greater-than 15.89 15.55 16
Intervall 32.95 32.94 34.1
interval2 44.03 45.33 44.2
kddI 0.321 0.32 0.32
kdd10 17.731 17.29, 17.4
kdd2 2.24 2.76 2.76
kdd3 1.6 1.28 1.28
kdd4 0 0 0
kdd5 11.2 11.39 10.52
kdcd6 2.48 2.28 2.48
kcdd7 19.08 20.13, 20.7
kdd8 _10.99 7.18 6.35
kdd9 21.54 14.24 13.79
majorit _gate 34.85 35.75 36.24
modulus2 12.15 12.29 12.24
mux8 19.29I 14.42 13.72
pal 15.96 16.77 16.67
pl_ dbl output 52.9 50.56 50.85
pal-output 58.84 59.23 58.92
parity 87.22 86.63 86.58
remalnclr2 25.481 26.1 25.45
mdml 2.421 2.14 2.38
md_m 10 11.66 11.39 11.62
rnd m25 26.37 25.57 25.59
md_m5 7.53 7.32 6.99
md_m5C 42.75 42.16 42.72
rndI 60.45 61.38 61.52
rncl2 61.52 61.2 62.22
mod3 60.84 60.94 60.5
substrl 31.63 29.14 30,03
substr2 24.63 22.58 22.33
subtract 48.15 42.05 41.44
subtract3 27.29 3.72 3,6

Average over 26.406875 23.37833333 23.2052083
all Functions

Table 5: C4.5 trials with varying options
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I C4.5 10 trees C4.5 10 trees
Function Name Threshold=O/grouping (-s) Threshold= 1 /grouping (-s)
acdO 16.261 16.26
add2 j 27.4 27.42
add4j 3.6 3.6
ch 15f0 27.98 27.87
ch1 76f0 5.54 5.54
chl77fO 0 0
ch22fO 11.63 11.59
ch3OfO 11.541 11.58
ch47f0 21.521 21.52
ch52f4 22.63 22.45
ch70f3 12.181 12.19
ch74f1 1 15.791 15.83
ch83f2 2 6 .0 3 1 26.03
ch8fO 11.93! 11.97
contains 4_ones 58.49 58.49
greater_.than 16 16
intervall T 34.28 34.1
interval2 44.35 44.2
kdd 1 0.321 0.32
kdcdl 0 17.52 17.4
kdd2 2.76 2.76
kdd3 1.281 1.28
kdd4 01 0
kdd5 10.521 10.52
kdc6 2.481 2.48
kdd7 20.691 20.7
kdd8 6.35 6.35
kdd9 13.79 13.79
majoritygate 36.24 36.24
modulus2 12.26 12.24
mux8 13.96 13.72
pal 16.67 16.67
PO dbloutput 50.77 50.85
paLoutput 58.98 58.92
parity 86.58 86.58
remalndr2 25.49 25.45
rod_ml 2.38 2.38
rnd_m 10 11.62 11.62
md-m25 25.59 25.59
rnd.m5 6.99 6.99
md m50 42.72 42.72
rndl 61.5 61.52
rnd2 62.25 62.22
mcr3 60.48 60.5
substrl 30.3 30.03
substr2 22.08 22.33
subtractl 41.42 41.44
subtract3 3.6 3.6

Average over 23.22375 23.20520833
Iall Functions

Table 6: C4.5 trials with grouping options
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any significant benefit going from 10 trees to 100. In fact, we have no reason to believe that there will be any
significant difference between 10 trees and 1000. Thus our best set for which we will test against Pattern Theory
will be with all the options set at default except the weight (threshold) will be 0 (-m 0) and the number of trees
will be 10 (-t 10). We will use -m 0 over -m I because this is the lowest setting we can have that corresponds to
not having any noise in the data.

5 Experimental Results

Now that we have the best options possible for C4.5 over our benchmark set of functions, we can test it with
honesty against Pattern Theory. This section refers to the learning curves for every function tested. The curves
themselves are shown in Appendix A. The sets are displayed with C4.5 first on a given function, then Pattern
Theory. For a given graph, the Y-axis is the number of errors and the X-axis is the number of training samples.
Each graph includes the maximum, minimum, and average error. The experiments stopped if the maximum error
reached 0 (i.e., for all 10 runs, there were no errors). Thus, there would not be any data points beyond that
particular sample size. The chance line, represented by dashes, is the error expected if we were to randomly
guess on the remaining cases. We would expect to get half of them right and half wrong since there are only two
outcomes. On the graphs for FLASH (Pattern Theory), there are additional points plotted corresponding to the
calculated DFC and the number of "don't cares" for a given sampling. We can also see that functions that are
highly patterned have a low DFC while more complicated patterns have a higher DFC. Moreover, the random
functions have a very high DFC.

Earlier, we gave some background about how function decomposition works and thus how FLASH works. What
has not been described is the actual search procedure that FLASH uses in order to select a partition. First, the
same strategy was used for every experiment. Essentially, it is a two-ply look ahead on all possible partitions.
The calculated DFC is used to continue selecting partitions until they no longer decompose. The actual strategy
itself is given in Appendix B. The name of the decomposition plan is dniOe300.

6 Analysis

If we examine C4.5's performance as a whole, its ability ranges from extremely good to extremely poor.
C4.5's performance was excellent for the Boolean Expression functions; it had a respectable performance for
PAL, MUX8, MODULUS2, and GREATER._THAN; it has a hard time with the other string functions, and it is
poor at learning the other PAL functions. C4.5 is especially poor at PARITY. Its performance on the character
functions are mixed. Some it learns very well and others, the performance is fair. A few anomalies were the
fact that C4.5 performed very well on ADD4 and ADDO but poorly on ADD2. It was even more bizarre to see
excellent performance on SUBTRACTION3 and very poor performance on SUBTRACTION1.

Comparing C4.5 and FLASH (Pattern Theory/Function Decomposition), C4.5 beats FLASH for only two func-
tions: KDD2 and KDD3. It is equal or slightly better for the two character functions: CH52F4 and CH83F2. For
all of the other functions however, FLASH outperforms C4.5. In some cases, the performance margin is substan-
tial. The notable cases are: ADD2, ADD4, CONTAINSA_4ONES, KDD7, KDD9, KDD10, MAJORITY-GATE,
PARITY, SUBTRACTION1, and SUBTRACTION3. Of course, we are not concerned with comparing perfor-
mance on different random functions. Their purpose is to measure consistency and normal behavior. It would be
unusual for any method to be significantly better in some random function than another.

The other functions were not mentioned here because some comparisons might be construed as unobjective.
Although different performance is seen in some cases, in general, we see equal performance or FLASH performing
better. The above functions were mentioned specifically because of the vast differences between the two programs.

In general what we see in C4.5 is that it is unequipped to handle "XOR" type relations. The inherent problem
is its inability to deal with replication in such disjunctive eoncerpts as: (A and B) or (C and D). T7 i as
expected [6]. It would appear that C4.5 is unable to effectively learn functions that have an "XOR" or lend
themselves to "XOR." FLASH, on the other hand, has no restrictions in this area. There are still some problems
with functions that have deep replication that prevent FLASH from completely learning such a function unless
all. of the samples are given. However, its performance does not degrade beyond C4.5.
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C4.5 holds its own for the Boolean functions that do not involve "XOR." It also had a respectable performance
for some of the character functions. However, the best domain for C4.5 is the class of Boolean Expressions. In
the other areas, it does not stand up to FLASH.

In Table 7, we list the average errors for all the functions, similar to the previous section. Here, however, we
show C4.5's best with FLASH. One can see from the total average error that FLASH is outperforming C4.5 as a
robust pattern finder in this domain of binary variables and noise free data. This table also shows off to the side,
how the average error changes after successively removing functions that C4.5 is unable to handle. Once they are
all removed, their respective performances are nearly equal.

It is noted to the reader that although the Table 7 provides a nice compact compariso.., it is not 100% reliable.
There are a few functions in which the average error does not correspond to performance. They are anomalous
and are few in number. They are notably KDD2, Subtraction3, and ADD4. For example in KDD2, C4.5's
average error is 2.76 versus FLASH's 2.4. However, C4.5 learns the function in 125 samples and FLASH learns
the function in 150 samples. On the other hand in Subtraction3, C4.5's average is 3.6 versus FLASH's 0. The
two performances appear similar. But, C4.5 learns the function in 150 samples and FLASH learns the function
in only 25 samples. For a comprehensive analysis, the reader is again referred to the individual learning curves
in Appendix A.

Another attempt is made to summarise all of the data from the graphs in Appendix A shown in Figure 3.
Here, we show the number of functions learned versus the number of samples for FLASH and C4.5. From the
figure, we can see a clear performance distinction between the two methods.

7 Conclusion and Summary

In conclusion, FLASH (Pattern Theory) was shown to be a more robust pattern finder than C4.5 for our
limited domain of binary variables and noise free data. Again, we emphasize the point that Pattern Theory can
be extended to discrete and continuous valued variables demonstrating its flexibility. C4.5 held its own in the
Boolean Expression domain and some of the images, however, its performance was lacking in comparison in the
other domains. Specifically, C4.5 fails to learn concepts with implicit "XOR" representations or functions that
have duplication in their subtrees.

Pattern Theory has been demonstrated a robust, effective inductive learning technique comparable to the best.
The experimental results show its learning ability relative to chance and C4.5. Furthermore, as displayed by our
graphs, there is a correlation between a function that is highly "patterned" and a function that has a low DFC.

8 Future Work

Some future directions in this area are to continue testing more functions like those in our experiments. In
fact, a few of the functions tested were added after most of the experiments were performed (the monk problems
and the "deep functions") and were not included in the first 7 tables. New functions are constantly being tested,
but we had to wrap up the discussion at some point. However, their graphs were included in the Appendix A for
study. In addition, it is planned to increase the number of variables to as many as 30 in the immediate future.
We are also looking into adapting the current program to handle discrete and continuous variables. Furthermore,
we ultimately plan to incorporate methods of handling noise. Moreover, we are looking for ways to increase the
speed by limiting the exploration of the partition search space.

We have a working theoretical result of applying function decomposition to continuous variables and the
searching ability is getting better. At this point, the real limitation is the number of variables and noise. Since
function decomposition involves an exponential search space, the only hope is using some method to prune the
branches of the tree. At the rate the work is going, it is very possible that at the time of this printing, we will be
able to handl-e to 1 ' variables with the --am-e .... acy

Noise, on the other hand, is a more difficult problem. At present, we have no formal theoretical basis for
dealing with it. It is, however, a personal interest of the author and the hope is to perform some quality research
in this area.
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C4.5 10 trees Flash -

Function Name Threshold = 0 dniOe300 _

addO 16.26 10.38 _

add2 27.4 5.24 _qoc14 3&.0
ch 151 27.98 19.595 i

ch176f0 5.54 0.16
ch177fO _ 0 0__
ch22-O [_11.63 71
ch3OfO 11.54 10.29;
ch4710 21.52 16.89,
ch52f4 22.63 27.74 1
ch70f3 12.18 12.04__ __

ch74fl 15.79 15.85 _ _

ch83f2 26.03 27.885 _

ch8f0 11.93 11.7 i
contains_4_ones 58.49 24.49
greaterjthan 16 9.781
Intervall 34.28 33.585
Interval2 44.35 35.94
kddl 0.32 0
kdlO 17.52 8.18 _
kdd2 2.76 2.4
kdd3 I 1.28 2.72
kdd4 _ _0 0
kdd5 10.52 11.11
kdd6 2.48 3.72
kdd7 20.69 10.53 1
kdd8 6.35 0
kdd9 13.79 6.55
majorltygate 36.24 18.74
modulus2 12.26 13.4
mux8 13.96 13.04
PC[ 16.67 9.9
paldbl-output 50.77 38.941
pal-output 58.98 58.79_
Parity 86.58 10.45
remoindr2 25.49 25.22
md ml 2.38 2.31 Average C4.5 Flash
md-mlO 11.62 13.045 All Functions 23.22375 17.58521
md._m25 25.59 25.61 Without Parity 21.875741 17.73702
Md mS 6.99 7.815 Without KDDs Having XOR' 22.511361 18.61159
rnd.m5O 42.72 42.685 Without Ma)ority Gate 22.19209 18.6086
mdl 61.5 59.125 Without Contains 4 1's 21.32786 18.46857
rnd2 62.25 60.055 Without Subtraction 21.26875 18.7865
rnd3 60.48 59.865 Without ADD's 21.71595 19.88757
substrl 30.3 24.105 1
substr2 22.08 23 -I

subtractl 41.42 24.22
subtract3 3.6 0
Average over all ftns 23.22375 17.58521

Table 7: C4.5's best options with FLASH's best
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A Individual Learning Curves of Each Function for C4.5 and FLASH

This section is a set of graphs described in the report. Every graph has the name of the function being tested
at the top, the number of errors as the y-axis, and the number of samples as the z-axis.

The tests on the individual functions were as follows. First, each method was given a random set of data to
train on ranging from 25 to 250 out of a total of 256 possible cases. Once the method was trained, the entire 256
cases were tested and the number of differences were recorded as errors. This procedure was repeated 10 times
for a given sample training sine in intervals of 25 yielding a maximum, minimum, and average number of errors
for each. Thus, the total number of runs for each function was 100 of varying sample size. None of the learning
was incremental. All of the runs were independent.

The chance line was calculated as follows. For a given sample size, assume we simply mimic the data we
are given and then randomly guess the remaining unknown elements. This creates a static learning line which
represents learning by chance. For a given function, the graph for C4.5 is displayed first followed by FLASH
(function decomposition). The FLASH graphs also have some additional information plotted: the average DFC,
and the number of "don't cares" or unknowns. The DFC is calculated by the function realized for each sample
size. Since there are ten trials at each sample size, an average DFC is computed.
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0 50 100 150 200 250
Samples

Chance

C4.5 Threshold=O (-m 0), 10 Trees (-t 10)

* Max Error

S Min Error

S. Avg Error
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SUBTRACTION3
150..............................80

- -60

100-

00

50-

-20

0 I * I* I

0 50 100 150 200 250
Samples

Chance

X Max error

)K Min error

~. Avg error

.... ... Don't cares

Avg DFC

FLASH dniOe300
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B Listing of the Decomposition Plan

Appendix B shows the actual decomposition plan used in our tests with FLASH. The listing is a printout of
the file dniOe300.
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iecomp Plan:
;election Plan:

- use shared variables
.2 - method

- first part type
- stopping condition

,valuation Plan:
- no of partition tests
- measure challenger by

I - measure champ by
| - threshold in n

champ multiplier
dp_forchildrenissame

)ecomp Plan:
;election Plan:
) - use shared variables
.)0 - method

- first part type
. - stopping condition
s0 - stopping condition parameter
Evaluation Plan:
2- no of partition tests
I - measure challenger by
L - measure champ by
4 - threshold in n
L - champmultiplier

- measure challenger by
I- measure champ by

- threshold in n
champ multiplier
Random No generator seed (>0)o - dpfor_best_partchildren is same

Decomp Plan: - -

Selection Plan:
0 - use shared variables
12 - method
2 - first part type
1 - stopping condition
1 - stopping condition parameter
Evaluation Plan:
1 - no of partition tests
4 - measure challenger by
4 - measure champ by
4 - threshold in n
1 champ multiplier
1 -Random No generator seed (>0)
1 - dp for best partchildren is same
1 - Random-No ginerator seed T>OT
1 - dp_forbest_partchildren-issame
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